CAE Solutions

Our mission is the same regardless of the project complexity, and this is to save you money and time in the product development cycle, making ADAPT your design engineering and manufacturing team’s CAE partner of choice. Our Computer-Aided Engineering Services include: FEA, CFD and Moldflow.

  • CAE / FEA / NVH – Expertise in Durability and Structural dynamic analysis and noise vibration and harshness.
  • CAE / CFD – Computational fluid dynamics experienced engineers who can optimize the air flow around a complete truck body, or optimize your HVAC or engine component designs, such as a manifold.
  • CAE / MOLDFLOW – Expert Moldflow Certified engineers who understand and can optimize your injection mold tooling.
  • Software: Optistruct, LS DYNA, Radioss, Abaqus, Moldex3d, NASTRAN, ANSYS

CAE Finite Element Analysis (FEA)

Finite Element Analysis (FEA) substantially increases the time to take products from concept to the production line while increasing accuracy, enhancing design, raising productivity and contributing to a faster and less expensive design cycle. FEA is one of ADAPT’s most powerful engineering tools for analyzing components because it allows entire designs to be constructed, refined and optimized prior to the design being manufactured. By utilizing FEA software, design variations can rapidly be examined, and unforeseen manufacturing problems can be identified and avoided prior to production.

Our FEA software and methods can be optimized for weight, cost and performance on almost any material, and optimization can be based on multiple simulations such as stress, strain, weight, force displacement, rotation, reaction force, normal modes, buckling and many other factors. ADAPT optimizes designs early in the product development process to arrive at a superior design, all while examining multiple project variations and evaluating numerous ideas within a time-frame to avoid designs that would have been costly in time, money and energy. ADAPT engineers have demonstrated that CAE Finite Element Analysis can be used for:

  • Structural Analysis
  • Heat Transfer
  • Fluid Flow
  • Mass Transport
  • Electromagnetic Potential

CAE Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) is a division of fluid mechanics that uses applied mathematics and algorithms to solve and analyze problems that involve fluid flows. CFD is sometimes referred to as a flow simulation, and it is a computer simulation technique that models fluid flow situations around or through any product for the prediction of heat, mass and momentum transfer.

To get accurate CFD results, you need capabilities for serious software. ADAPT engineers utilize state-of-the-art computers and software that perform the millions of calculations required to simulate the interaction of liquids and gases with surfaces defined by boundary conditions. Advances in technology and speed now allows ADAPT to apply additional software that improves both the accuracy and speed of complex simulation scenarios, such as turbulent flows.

A great benefit in time, cost, safety, performance and suitability, our engineers and CFD analysis yields real-time results which can be analyzed in the greatest detail, support product development and benefit a troubleshooting process, as well as be used toward countless other applications. ADAPT engineers have demonstrated that CAE Computational Fluid Dynamics Analysis:

  • Structural Analysis
  • Heat Transfer
  • Fluid Flow
  • Mass Transport
  • Electromagnetic Potential

CAE Moldflow Analysis (Certified)

Moldflow Analysis is a plastic injection molding simulation that allows our clients to determine the manufacturability of their part in the early design stages while avoiding potential issues that could have led to production delays and costly overruns. ADAPT engineers have demonstrated that CAE Moldflow Analysis:

  • Helps to ensure rapid manufacturing of high-quality parts
  • Increases the confidence in the manufacturability of the design
  • Reduces part cost by improving material utilization
  • Improves part strength, quality and value
  • Optimizes the design to the client’s production capabilities
  • Benefits in the selection of material characteristics
  • Supports the ability for advanced analysis, such as warpage or shrinkage

Acoustics Analysis

Acoustics Analysis is in regard to the propagation of sound and how to best design for certain acoustic requirements. ADAPT engineers can analyze current designs for acoustics requirements and help with design and material recommendations to improve the acoustics through specialized analysis software.

Blank Sizing & Material Utilization

As a precursor to the stamping process, specialized software enables ADAPT to quickly study and asses blank sizing and material utilization to minimize on scrap and waste.

Contact Stress Analysis

Utilizing the latest algorithms in our analysis software, ADAPT can predict the contact stresses in an application whether it is an insertion/extraction, press-fit or frictional contact in order to create the best design and verification strategy.

Cooling Analysis

Cooling Analysis provides the ability to accurately simulate any number of cooling designs to achieve uniform part cooling, minimize cycle times and reduce part warpage due to non-uniform cooling. Cooling design analysis can be used for products such as cooling circuits, inserts and steel types, and it can evaluate or determine the recommended cooling modifications, appropriate coolant temperature, the low rate to ensure coolant turbulence and the cycle-time based on a specified ejection temperature

Coupled Thermal-Structural Analysis

Coupled Thermal-Structural Analysis is typically applied to structures that experience operating loads at high temperatures like automotive exhaust, engines and so on. ADAPT has experience with modeling a variety of coupled thermal structural analysis to study and asses the design, material and structure.

Design Sensitivity Analysis

Structural Design Sensitivity Analysis concerns the relationship between design variables available to the design engineer and structural responses. Typical structural response may include displacement, stress, strain, natural frequency, buckling load, acoustic response and frequency response among others. Based on the sensitivity of the design variables like material property, sizing, component shape and configuration, ADAPT can make quick recommendations on material selection, gauge and part design.

Design for Six Sigma (DFSS)

As part of systems engineering, DFSS is a highly-disciplined process that helps companies focus on developing and delivering near-perfect products and services. ADAPT engineers have applied principles of DFSS to analysis for automotive and other components for improving designs.

Durability & Fatigue Analysis

Parts and structures subjected to cyclic mechanical and thermal loads will suffer from fatigue. Structural components such as a control arm might be strong enough to withstand a single, applied load, but to predict a component failure in daily, heavy-use, a Durability and Fatigue Analysis can be simulated to calculate and verify the lifetime of a product. ADAPT’s analysis can help predict how fatigue will affect the overall life of the product, identify areas that may be critically damaged and provide solutions to improve part strength, quality and value.

Flow & Pack / Filling Analysis

Flow and Pack Analysis is the first stage of the molding simulation process. Flow calculates the melt front advancement that grows through the part from the injection location and continues until the switch-over point to packing. Filling analysis provides the ability to simulate, identify and optimize the process to avoid molding uncertainty or resolve an existing injection molding problem.

Frequency & Buckling Analysis

Frequency and Buckling Analyses are critical components of a design and verification process. Inherent vibration modes in structural components or mechanical support systems can shorten equipment life and cause unexpected failures. ADAPT can evaluate natural frequencies and critical buckling loads, then expertly recommend design changes to improve product performance.

Kinematics Simulations

Kinematics Simulations are performed with an assembly of parts that are connected together by a variety of movable joints. When one of the joints move, it causes the assembly to move. While loads or weights are not associated with the parts, the assembly of parts is moving through some range of motion. ADAPT engineers can quickly develop and deliver kinematic working models using advanced software.

Linear & Non-Linear Optimization

Optimization refers to identifying the best solution from some a set of available alternatives. In the simplest case, this means solving problems in which one seeks to minimize or maximize a real function by systematically choosing the values of real or integer variables from within an allowed set. This formulation, using a scalar, real-valued objective function, is the simplest example of linear optimization. Optimization theory and techniques extend to other formulations and comprise a large area of applied mathematics. More generally, it means finding the “best available” values of some objective function given a defined domain, including a variety of different types of objective functions and different types of domains. When this domain is non-linear, it is formulated as non-linear optimization. ADAPT uses a variety of linear and non-linear optimization software to optimize designs for complex requirements such as roof crush and much more.

Linear & Non-Linear Statics Analysis

Linear and Non-Linear Statics Analysis is used for design and verification of products using a variety of structural and thermal loads. Knowing how a design will perform under different statics load conditions enables ADAPT engineers to recommend changes prior to physical prototyping, thereby saving time and money. Since most engineering problems contain some form of non-linear effect, ADAPT can include geometric and material non-linearity effects. ADAPT uses simplified linear approximations as a faster and more efficient alternative to non-linear analysis.

Manufacturing Analysis

A wide variety of computer simulation-based evaluation is now available to model and virtually simulate manufacturing feasibility for extrusion, tube bending, hydro-forming, casting and forging analysis. Custom software allows ADAPT to quickly evaluate manufacturing process for client applications to help with design recommendations to improve their products from a manufacturing perspective, thereby offering cost savings through avoidance of costly and time-consuming trial and error test methods.

Material Cost Reduction Studies

Material Cost Reduction can be achieved through a variety of methods and may include complete design using alternate materials, material substitution and down-gauge studies, material utilization studies, among other methods. ADAPT engineers can help evaluate material needs from furniture and other consumer products to Defense and Aerospace needs.

Mechanism Analysis

Analysis of Mechanisms is the study of motion of different members constituting a mechanism and the mechanism as a whole entity while it is being operated or run. This study of motion involves linear as well as angular position, velocity and acceleration of different points on members of mechanisms. ADAPT utilizes state-of-the-art software to evaluate all mechanism analysis needs and to provide design recommendations.

Metal Forming Analysis

Metal Forming Analysis is a virtual simulation of the process by complete simulation of press action in a stamping operation to form sheet metal parts. The analysis provides a visual design verification in the virtual world without the need for expensive and time-consuming prototyping. All aspects of forming can be evaluated including stamping, trimming, flanging, hemming and spring-back. ADAPT engineers have vast experience in this domain and have advanced software to assist with modeling and simulations.

Model Generation & Verification

We can develop FEA models for all types of analysis using state-of-the-art meshing software including batch meshing capabilities for rapid mesh generation. ADAPT utilizes mesh quality-checking tools and checklists to ensure the mesh meets client requirements and meshing guidelines.

Multi-Body Dynamics (MBD)

MBD programs can simulate the dynamics and control of multi-bodied mechanisms and ground/airborne vehicles. ADAPT can do mechanism analysis ranging from a simple linkage to complex auto engine assemblies to airborne/space vehicles. These models are designed to assess the concept feasibility, optimize vehicle/mechanism design and control system and quickly analyze the system for kinematic or dynamic failure.

Noise, Vibration & Harshness Analysis (NVH)

NVH Analysis is the study and modification of the noise and vibration characteristics of vehicles. While noise and vibration can be readily measured, harshness is a subjective quality, and it is measured either via “jury” evaluations or with analytical tools that provide results reflecting human subjective impressions. ADAPT has performed NVH simulations for cars, trucks and occupants of the can, and our engineers can change the sound quality by adding or subtracting particular harmonics and design around certain frequencies.

Reliability & Robustness Analysis

Reliability-based robust design for products like automobiles can be offered through mathematical and mechanical models for actual computation methods and practices on the basis of the research of failure physics combined with the reliability-based test and statistical analysis of failure data. ADAPT engineers utilize the latest software to develop predictive models for Reliability and Robustness engineering.

Size & Shape or Gauge Optimization

Also known as Gauge Optimization, in the Size and Shape Optimization method the thickness of the design variable parts are optimized by a method that gives the optimum gauges for sheet metal parts. Shape optimization involves developing morphed shapes or design variables which explore all the shapes available within the design space and through computational methods to quickly evaluate the product and provide solutions for the optimal shape.

Stochastic Analysis

Stochastic or random vibrations occur in a variety of applications of mechanical engineering. ADAPT can simulate how structures respond to random excitation and help quantify the random behavior to assist in product design decisions.

Thermal Analysis

Thermal Analysis evaluates the effects of temperature on materials and design. There are three types of thermal effects, and conduction, convection and radiation can all be studied using advanced computer simulations. Having modeled many complex thermal analyses for both steady state and transient simulations, ADAPT has the software and experience to provide improve part strength, quality and value.

Structural Crashworthiness

ADAPT can quickly simulate FMVSS, ECE and Insurance Institute test scenarios using a variety of dummy models, deformable and rigid barriers, impactors, rams, pendulums and head forms. Our engineers perform vehicle simulations for a variety of global requirements including:

  • FMVSS crashworthiness regulations for frontal, rear and side impact and roof crush resistance
  • ECE regulations such as deformable 40% offset, frontal impact, rear impact, euro dynamic side impact, etc.
  • Insurance/consumer requirements for IIHS, RCAR, AMS
  • Bumper Testing for both high and low speed impact tests
  • FMVSS requirements for occupant safety with free motion head impact, seatbelt anchorage, child restraints anchorage system, sled test occupant simulation, knee bolster simulation, steering control system, etc.
  • ECE regulations including luggage intrusion, steering control system, pedestrian safety, etc.
  • Airbag Folding Simulation

Topology & Free Size Optimization

In Topology Optimization, material is taken out of locations of low stress. This method leaves material only where necessary, which gives the load path. The optimized design has holes cut in the design variable parts, which lightens the structure. In this optimization method, typically the thickness of the parts, is not changed. Volume topology is often used to do concept design studies where non-intuitive designs can be quickly developed within the available design space.

During Free Size Optimization method, the thickness of the design variable parts is reduced at locations of low stress and material is added in areas of high stress. This method leaves material only where necessary, which gives the load path. The optimized design has holes cut in the design variable parts, which lightens the structure. In this optimization method, the thickness of the parts changes continuously.

In addition, Topology Optimization and Free Size Optimization can be combined. In doing so, the thickness of the part is increased or decreased based on the size optimization, and the topology optimization removes material where it is not necessary for managing stresses.

Warpage Analysis

Warpage Analysis provides the ability to optimize part design, material selection, mold design and processing parameters to manage and reduce part warpage in order achieve the intended part design. The results of a Warpage study can determine:

  • The warped shape of the part as it is ejected from the mold
  • The individual effects of filling, packing and cooling
  • The X, Y and Z-axis displacements to show only the deflection in each direction
  • An estimate of the shrinkage to which a mold should be cut

Take advantage
of our expertise and resources

We have extensive relationships with contract manufacturers and component suppliers worldwide. We reducing the burden on you and liaison third parties for you to ensure partners are integrated into the development process early. We act as a n integrator for your organization and your suppliers and manufacturers,

Our Clients

ADAPT Technology has over 130 customers. Some of the companies we proudly serve: